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Introduction 

In a global financial market with an ever increasing number of financial 

products, investors and financial organs faced an ever increasing risk associated 

with their asset allocation or their investment strategies. In this context the problem 

of the behavior of portfolios of credit risk corporate assets such as bonds has 

become very important as the probability of default for a company can be 

estimated from the prices of bonds it has issued. In particular we consider the 

influence of different variables on spread variation in a portfolio of bonds. We 

want to obtain clusters of units (bonds) which must be homogeneous inside and 

heterogeneous outside.  

Clustering is the unsupervised classification of patterns (observations, data 

items, or feature vectors) into groups (clusters). The clustering problem has been 

considered in many contexts. It is useful in several exploratory pattern-analysis, 

grouping, decision-making and machine-learning situations. Different clustering 

algorithm have been proposed (see e.g. Fung, 2001), however several clustering 

methods have been criticized due to the lack of theoretical robustness both from a 

mathematical and a probabilistic point of view. For this reason model based 

clustering which can be defined as a set of clustering procedures based on finite 

mixture models are being increasingly preferred over heuristic methods 

(McLachlan, 2010, Ingrassia et al., 2012). This type of models can be used in 

different fields concerning clustering to high-dimensional data too (see e. g. Fraley, 

2002, McLachlan, 2010). 

In this paper we apply the mixture model approach and compare it with the 

classical K-means approach for analyzing the influence of some financial variables 

on spread variation in a portfolio of bonds. In the second paragraph we defined the 

problem, in the third the used methodology while in the fourth we present the 

application. 
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1. Problem definition 

1.1. The dataset 

In order to build up clusters of bonds homogeneous according to spread 

behavior, a data set of 7100 records (one for each bond) referred to the year 2012 

has been considered .The information are both qualitative and quantitative, here is 

the list: Bond type, Type of bond sector, Subordination level, Government 

coverage, Date of maturity, Bucket of maturity, Coupon frequency, Rating of the 

bond, Rating of the issuer, Country of the bond, Currency, Market price, Yield to 

maturity, Spread. As the Spread is the “key” variable we have not considered 

records with missing values for it, so 6400 records have been used in the analysis. 

Some variables have required a preliminary transformation, in particular the 

dichotomous variables Bond type and Government coverage have been transformed 

in binary variables and the ordinal variables Rating of the bond and Rating of the 

issuer have been recoded into discrete variables so to assume constant distance 

between two contiguous rating levels. The variable Subordination level has been 

transformed from a qualitative into a quantitative variable using information about 

the probability of payment in relation to each subordination level. Another 

quantitative variable is Coupon frequency that is the number of coupons into the 

year. From the information codified in Date of maturity (day:month:year) we used 

only the year; Bucket of maturity is treated as an interval variable taking account of 

the central values of the classes. In addition to the Spread there are other two 

continuous variables: Market price and Yield to maturity. In the dataset there are 

also three categorical variables, that is Type of bond sector, Country of the bond 

and Currency; all these variables present a large number of categories. 

The variables Spread and Yield to maturity are strong correlated; this is due to 

the fact that the Yield is the rate of return anticipated on a bond if it is held until the 

maturity date. The other variables are not so related to the Spread.  

 

 

2. The methodology: model based clustering versus K-means algorithm 

The base assumption of model based clustering methods is that the data are 

generated by an underlying mixture of a finite number of distributions. The 

objective is to identify the parameters of each of them and their number. Usually 

the assumption is to take the component distributions to be multivariate normal 

(Banfield et al., 1993). The basic concept of model based clustering is that of 

mixture model (Lindsay, 1995, McLachlan, 2007). 

Given         a random sample of size  , dove    is a  -dimensional a 

random vector with density probability function       on   . Let   be a random 
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vector consisting of p features      
      

    while let      
      

    

be an observed random sample of size n on  .  

With the finite mixture model based approach to density and clustering 

(McLachlan et al., 2000), the density        of    (one of the g density 

components of the mixture) can be written as: 

 (  )  ∑     (  )
 

   
       (1) 

where        are the component densities of the mixture and    are some 

unknown proportions such as: 

                    ,  ∑   
 
       

The number of components g can be taken sufficiently large to provide accurate 

estimate of the underlying density function. For clustering purpose each of the g 

components correspond to a cluster.  

The posterior probability that an observation, on which    has been observed, 

belongs to the  -th component of the mixture is 

  (  )      (  )  (  )⁄   for g=1,…,g; j=1,…,n    (2) 

A probabilistic clustering of the data in g clusters can be obtained in terms of 

the fitted posterior probabilities of component membership for the data as given in 

(2). It is possible to obtain a partition of the observations in   nonoverlapping 

clusters         assigning each observation to the component to which it has the 

highest estimated posterior probability of belonging. In this way the  -th cluster    

contains all the observations assigned to group   . 

Formally    contains those observations   with  ̂     ̂     , where 

 ̂   {
      ̂ (  )   ̂ (  )                         

   
                                                                    

 

with  ̂ (  ) an estimate of   (  ). 

According to this notation  ̂   can be viewed as an estimate of     which, under 

the hypothesis that the observations come from a mixture of   groups        , is 

defined to be one or zero accordingly to the fact that the  -th observation does or 

does not come from                     . 
The model can be fitted to the data using the maximum likelihood estimation 

method implemented via the EM (Expectation Maximization) algorithm (Dempster 

et al., 1977, McLachlan et al., 1997). Different models can be obtained.  

On the other side K-means algorithm is the simplest and the most popular in the 

class of partitional algorithms for cluster analysis. The method allows to find a 

partition into k clusters that minimizes the square error between the empirical mean 

of a cluster and the points in the same cluster. It is necessary to specify “a priori” 

the number of clusters (k), the initial centers (seeds) and a distance metric (the most 
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used metric in K-means method is the Euclidean metric). The procedure is iterative 

and the steps are: 

1. Choose k points (seeds) into the dataset, to use as initial group centers. 

2. Assign each unit of the dataset to the group that has the closest center. 

3. For all the k groups recalculate the centers. 

4. Repeat from step 2 until the centers get stable. 

The algorithm was first proposed over 50 years ago (Jain, 2010). The advances 

in storage technology and the developments of  Data Mining techniques produced a 

lot of extensions of the K-means in order to cluster large data sets containing both 

numerical and categorical variables (Huang, 1998). In this paper we use the K-

means algorithm in the standard form on a large dataset with mixed variables, then 

we test the algorithm comparing the results with those obtained from the model 

based clustering method. 

 

 

3. The Application  

3.1. Variable choice: the regression method 

In this study the regression analysis is used in order to choice the variables for 

the subsequent cluster analysis. As the aim is to identify homogenous clusters 

regarding the Spread, this variable is used as the dependent variable of a multiple 

regression model while the independent variables are individuated within the 

dataset by a stepwise regression. In this approach we have considered all the 

quantitative variables and two binary variables. We have also explored the 

influence of the categorical variables Subordination level, Country of the bond, 

Currency, for each of these variables, a reclassification of the categories, in order 

to reduce their number, has been carried out, then each of these categories has been 

transformed into binary variables. No significance has been obtained for these 

categorical variables, for this reason they are not involved in the clustering. At this 

point we have leaved out the variables with multicollinearity problems and so we 

have obtained the final regression model described in tab. 1. As one can see this 

regression is highly explicative. 

3.2. Cluster Identification 

Both the algorithms identify eight clusters formed more or less by the same 

bonds. The BIC criterion is used to compare the different models in the model 

based clustering (see fig. 1 and tab. 2 ) while the Anova is considered in the K-

means algorithm (see tab. 3). About the R
2
 index the best value of it turns up for 

k=8. Referring to the model based clustering the Mclust package of the R language 
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has been used for the analysis (Fraley, 2012). The best values for the BIC criterium 

regards model “VEV” with seven or eight components. 

Table 1  Regression model description. 

R2 = 0.952  

Adjusted R2= 0.906 

F=12374.258  

(Sig.=0.000) 

Unstandardized 

coefficients 
T Sig. 

Collinearity statistics 

B 
Std. 

error 
Tolerance VIF 

Constant -97.555 5.222 -18.681 0.000   

Bond type -20.418 4.236 -4.820 0.000 0.756 1.323 

Government 

coverage 
-21.032 2.673 -7.868 0.000 0.934 1.071 

Coupon frequency -4.888 0.942 -5.186 0.000 0.764 1.309 

Rating of the bond 1.452 0.420 3.457 0.001 0.571 1.751 

Yield to maturity 89.896 0.475 189.306 0.000 0.596 1.678 

 

Figure 1  BIC values for the different models. 

 

 

Table 2  BIC values for the different models. 

 1 2 3 4 5 6 7 8 9 

EII -3748.9 -3061.0 -2838.6 -2716.1 -2743.7 -2704.9 -2693.6 -2731.3 -1807.6 

VII -3748.9 -2543.5 -1592.2 -1345.2 -1176.8 -1039.7 -942.2 -806.9 -752.0 

EEI -3775.9 -2893.0 -2516.9 -2340.2 -2272.6 -2259.9 -2293.2 -2330.9 -2329.1 

VEI -3775.9 -1957.0 -1189.4 -796.7 -575.0 -358.3 -187.9 -1126.5 -116.7 

EVI -3775.9 -2617.4 -1714.9 NA -1522.3 -1288.7 -1314.7 -1387.3 -1357.2 

VVI -3775.9 -1803.4 -472.6 55.3 174.5 381.8 461.3 493.4 484.4 

EEE -1686.8 -1501.7 -1469.2 -1541.6 -1373.0 -1325.1 -1303.8 -1341.5 -1355.4 

EEV -1686.8 -654.2 235.6 238.2 12.3 214.9 289.2 283.7 195.2 

VEV -1686.8 -10.6 764.7 906.1 842.7 920.4 1053.0 1044.8 937.8 

VVV -1686.8 11.8 819.1 952.1 NA NA NA NA NA 
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Table 3  Clusters Identification on the basis of the ANOVA. 

 
Variance 

Between 
Df 

Variance 

Within 
df F 

Standard 

deviation 
R2 

Bond type 2.248 7 0.099 6392 22.63 63.25 0.99 

Government 

coverage 
7.281 7 0.199 6392 36.59 54.10 0.99 

Coupon 

frequency 
29.366 7 2.004 6392 14.66 73.45 0.99 

Rating of the 

bond 
5613.342 7 7.576 6392 740.91 112.02 0.99 

Yield to maturity 8253.320 7 1.241 6392 665.14 137.16 0.99 

As we want to identify clusters homogeneous regarding the Spread, first of all 

we describe its behavior among clusters and inside the clusters. In tab. 4 clusters 

are ordered for increasing values of the Spread: the number of bonds inside the 

clusters decreases with the increasing of the Spread and bonds with small values of 

the Spread belong to the same cluster (Cluster 7) that is also the larger one. The 

last cluster (Cluster 8) is formed only by three bonds with very large values for the 

Spread. The nonoverlapping of the values of the Spread derives from the method 

used in the variables choice i.e. the regression analysis. 

Table 4  Distribution of the Spread into clusters. 

 
Number of 

units 
Minimum Maximum Mean 

Standard 

deviation 

Cluster 7 2794 -543.87 89.342 12.23 63.25 

Cluster 1 1930 89.57 287.30 166.45 54.10 

Cluster 5 1223 287.78 574.20 408.07 73.45 

Cluster 6 313 575.14 981.38 739.60 112.02 

Cluster 2 91 983.07 1596.86 1219.88 177.23 

Cluster 4 33 1651.81 2367.76 1996.45 198.68 

Cluster 3 13 2427.86 3172.69 2770.78 261.30 

Cluster 8 3 3634.43 3885.09 3791.94 137.16 

In order to describe the eight clusters we examine the variables used for the 

analysis and the others belonging to the dataset. We note that in the clusters where 

the values of the Spread are smaller the bonds are mainly fixed rate bonds. The 

Yield to maturity increases as the Spread increases.  

As regard the variables not used in the clustering, the Market price mean 

decreases from Cluster 7 to the last one (Cluster 8) where the Spread has the 

highest values. In the clusters which present a smaller risk measured by the Spread 

there is a variety of currencies, in particular in Cluster 7 there are all the types of 

currencies. The currency of 72% of the bonds in portfolio is euro and its presence 

increases with the increasing of the Spread, this is due to the euro volatility. As 

regards the Bucket of maturity in Cluster 7 (that shows the best performance for 
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Spread values) the bonds have a lower distance to Date of maturity than the bonds 

in the remaining clusters. This distance increases with the Spread, on the contrary 

the Subordination level reveals decreasing values with respect to the probability of 

payment. Most of the bonds belong to the financial sector. 

 

 

4. Conclusions 

In this analysis we consider the model based clustering on mixture models and 

compare it with the classical K-means approach. The application regards the 

influence on some financial variables on spread variations in a portfolio of bonds 

and the subsequent clustering of bonds. The results obtained, after running the 

model based algorithm, are consistent with the K-means approach. Moreover the 

choice of model based clustering is supported from a theoretical point of view. In 

fact several clustering methods have been criticized due to the lack of theoretical 

robustness while the model based clustering, which can be defined as clustering 

procedures based on finite mixture models, have a strong mathematical and a 

probabilistic background. This type of models can be used in different fields 

concerning clustering to high-dimensional data too. 
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SUMMARY 

In this paper we consider the influence of different variables on spread variation in a 

portfolio of bonds. In order to choose the most relevant variables a preliminary regression 

analysis has been considered. In order to obtain cluster of units on the base of the variables 

selected by using a preliminary regression analysis two clustering methods have been 

considered: a classical k means cluster analysis and a model based clustering. As it is well 

known different clustering algorithm have been proposed in literature, however several 

clustering methods have been criticized due to the lack of theoretical robustness both from 

a mathematical and a probabilistic point of view. For this reason model based clustering - 

which can be defined as clustering procedures based on finite mixture models are being 

increasingly preferred over heuristic methods. This type of models can be used in a lot of 

fields . The application regards a portfolio of bonds on which a set of variables has been 

collected. 
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